Survey of the water quality and aquatic community of wetlands in Blackstone Lake Aug 30-31, 2005

By

Dr. Patricia Chow-Fraser

McMaster University, Dept. of Biology Hamilton, ON L8S 4K1 chowfras@mcmaster.ca

On Aug 30 and 31, 2005, we sampled three wetlands of Blackstone Lake to assess the quality of their fish habitat. Unlike more than 75 wetlands that we had surveyed routinely throughout eastern Georgian Bay and the North Channel between 2003 and 2005, wetlands in Blackstone Lake are atypical in that they are not directly linked to the waters of Georgian Bay. As part of this assessment, special nets are placed in aquatic vegetation and are left overnight to sample the fish. In such sampling, we often catch several species of turtles even though they are not the target species. In addition, we identify all submergent, emergent and floating aquatic plants that are encountered in the wetland by canoe. In three open-water sites, we also collect water samples using standardized protocols to determine the concentration of primary nutrients, planktonic algae and suspended solids in the water column. Certain physico-chemical characteristics of the water (e.g. ambient temperature and dissolved oxygen concentration, water turbidity, pH, etc.) are also collected at the open-water site with multi-parameter probes.

Water Quality

We collected water at three sites in shallow, open-water areas, and these were called "BK1 (Ludwig)", "BK2 (Lawson)" and "BK3 (Oldfield)" (see Fig. 1). Water depths in these areas were generally less than 1 m. Appropriate information from the wetland surveys were used to generate Water Quality Index (WQI) scores for each site. The WQI (Chow-Fraser 2006) is an objective way to determine the extent of disturbance on the wetland originating from human disturbance. Details on how the water-quality samples were collected, processed and analyzed are in Appendix 1.

All three sites had excellent water-quality characteristics, and had WQI scores of 2.46, 2.45 and 2.42 for BK1, BK2 and BK3, respectively, indicating no human-induced pollution. These high scores put wetlands in Blackstone Lake in the "excellent" category (WQI scores from +2 to +3). To put these results in perspective, compared with 82 other wetlands that were sampled in Lake Huron between 1998 and 2005, the wetlands of Blackstone Lake ranked 2^{nd} to 4^{th} , and were 3 of only 12 sites that had an "excellent" designation. The waters of Blackstone Lake are naturally brown-coloured (dystrophic) because of humic substances from the Pre-Cambrian Shield, and this prevents light from penetrating very deep into the water column. Despite this, the water has very little suspended particles (algae or sediment) and is exceptionally clear (low turbidity values ranging from 0.63 to 1.06). Another characteristic of dystrophic water is the relatively low conductivity (approximately 55 μ S/cm) compared with that of Georgian Bay waters (typically above 150 μ S/cm).

Fig. 1. Location of sampling sites, BK1 (Ludwig's), BK2 (Lawson), and BK3 (Oldfield).

Physico-chemical characteristics of the water column were also taken at a deep-water site marked as "Profile" (168 ft) (Fig. 1). We were able to measure the top 25 m of the water or roughly half of the column (maximum depth of >190 ft or 58.5 m) at meter intervals down to 12 m. There is a layer of water between 6 and 12 m referred to as the *metalimnion* (see Fig. 2). This is the portion of the water column where temperature changed rapidly with depth changing from 21° to 6.7°C between 6 and 12 m, respectively (Fig. 2a). The two layers above and below are referred to as the epilimnion (top) and the hypolimnion (bottom), where temperatures are isothermal (same temperature). The mean epilimnetic temperature was approximately 23°C, while the mean hypolimnetic temperature was approximately 5.5°C. This type of thermal stratification is very common in late summer for north temperate lakes. It is also common to observe a peak in dissolved oxygen concentrations in mid-metalimnion (Fig. 2c), corresponding to increased photosynthetic activity of the phytoplankton. Algae tend to accumulate there because they are not eaten by the zooplankton. The pH of the water in the hypolimnion is a result of respiration from decomposing material that fall from the epilimnion and is trapped there (Fig 2d). It is not unusual to see a range of pH values from 7 to 8 as one ascends the water column from the hypolimnion to the epilimnion. Conductivity generally stayed the same throughout the column, ranging from 50 at the epilimnion to slightly lower values of 46 µS/cm in the metalimnion and hypolimnion (Fig. 2b).

Aquatic Plant Community

We surveyed the submersed and floating plant communities at two sites (BK2 and BK3) and also identified emergent plants near the edge (Table 1). No attempt was made to identify all the wet meadow and sedge species since this is outside the scope of our routine survey. Aquatic plants range in habit from those that spend most of their life cycle submersed in water (submergent), to those that have some parts floating on the water surface (floating), to those that have most of the plants emerge above the water surface (emergent). Of these, submergent plants are the most dependent on water clarity, and are therefore good indicators of water polluted by excessive nutrients and sediment caused by human activities. Generally, the more diverse the submergent community, the better the wetland.

There was a very diverse community of submergent plants in the wetlands of Blackstone Lake. We identified 15 species that spend most or part of their life submerged in water, including two bladderworts that are rare, and only found in very low-nutrient sites (*Utricularia intermedia* and *U. purpurea*). The water lobelia (*Lobelia dortmanna*) is also rare and fragile, and requires very clear water to survive. Similarly, freshwater sponge was found at one site, and is considered an indicator of excellent water quality. Other submergent species that are found commonly in other wetlands include grassy arrowhead (*Sagittaria graminea*), short-spike water milfoil (*Myriophyllum sibiricum*), slender water nymph (*Najas flexilis*) and several species of pondweed (*Potamegton pusillus, P. spirillus, P. epihydrus*, and *P. natans*).

Plants that can float on the water surface are less vulnerable to poor water quality, and are therefore not very useful indicators of water clarity. However, some species cannot tolerate high nutrients, including one of the five species that was found in Blackstone Lake., the floating burreed (*Sparganium fluctuans*). There were 4 other floating species, including water shield (*Brasenia schreberi*), common yellow pond lily (*Nuphar variegata*), the fragrant white lily

Fig. 2. Depth profiles of a) temperature, b) conductivity, c) dissolved oxygen and d) pH at a deep site in Blackstone L. The dotted lines delineate the metalimnion, which separates the epilimnion and the hypolimnion.

Table 1. Summary of aquatic plants found at the two sites in Blackstone Lake during the August 2005 survey

			S	ite
Scientific name	Common name	Туре	BK2	BK3
Eleocharis robbinsii	Robbins' spike-rush	emergent	\checkmark	1
Equisetum fluviatile	water horsetail	emergent	\checkmark	\checkmark
Eriocaulon aquaticum	pipewort	emergent	\checkmark	\checkmark
Pontederia cordata	pickerelweed	emergent	\checkmark	\checkmark
Scirpus sp.	bulrush	emergent	\checkmark	\checkmark
Sagittaria species	Arrowhead species	emergent	\checkmark	\checkmark
Sparganium androcladum	Branched bureed	emergent	\checkmark	\checkmark
Sparganium sp.	burreed	emergent	-	\checkmark
Typha sp.	cattail	emergent	\checkmark	-
Brasenia schreberi	water shield	floating	\checkmark	-
Nymphoides cordata	little floating hearts	floating	\checkmark	\checkmark
Nuphar pumila	least vellow lilv	floating	-	\checkmark
Nuphar variegata	common vellow pond lily	floating	-	\checkmark
Nymphaea odorata	fragrant water lily (white)	floating	\checkmark	-
Sagittaria graminea	grassy arrowhead	submerged	\checkmark	-
	8	edge		
Lobelia dortmanna	water lobelia	submergent	_	\checkmark
Myriophyllum sibiricum	short-spike (common) water	submergent	\checkmark	-
	milfoil	8		
Najas flexilis	slender water nymph	submergent	\checkmark	-
Nitella sp.	stonewort	submergent	\checkmark	\checkmark
Potamogeton pusillus	"slender" pondweed	submergent	\checkmark	-
Potamogeton spirillus	Northern snailseed	submergent	\checkmark	-
Scirnus subtarminalis	Water bulrush swaving rush	submargant	./	1
sponges	spongos	submorgont		•
sponges Utrioularia intermedia	sponges flatlagyad bladdarwort	submorgont	v	
Utricularia purpuraa	flatieaved bladdel wort	submorgont	-	• .(
Difficultaria purpurea	ribbon loof pondwood	submergent/	v	v
Folumogelon epipnyarus	hoon-lear polidweed	floating	v	-
Potamogeton natans	broad-leaved pondweed	submergent/	1	1
1 olumogelon halans	broad-leaved polidweed	floating	·	•
Sparganium fluctuans	floating burreed	submergent/	1	1
Sparganiani jiaciaans	noaning burreed	floating	·	•
Utricularia vulgaris	common bladderwort	submergent/	1	1
Ciricularia valgaris	common bladder wort	floating	•	•
		nounng		
		WMI score	3.82	4.00

(*Nymphaea odorata*), and little floating hearts (*Nymphoides cordata*). We also identified 9 species of emergent plants that included arrowhead (*Sagittaria sp.*), the rare Robbins' spikerush (*Eleocharis robbinsii*), pickerelweed (*Pontederia cordata*), a species of bulrush (*Scirpus sp*), Branched burreed (*Sparganium androcladum*), a cattail sp. (*Typha sp.*), water horsetail (*Equisetum flluviatile*) and pipewort (*Eriocaulun aquaticum*).

As mentioned earlier, aquatic plants can be useful indicators of water quality in wetlands. Croft and Chow-Fraser (2006, in submission) have developed the Wetland Macrophyte Index (WMI; see Appendix 1) to rank the quality of coastal wetlands of the Great Lakes. Data from this survey were used to calculate a WMI score, and we obtained a score of 3.82 and 4.00 for BK2 and Bk3, respectively. As yet, no formal categories have been assigned to WMI values; however, in a survey of 195 sites surveyed between 1996 and 2005, Croft and Chow-Fraser found only 5 sites with WMI scores higher than 3.82. Therefore, similar to the WQI scores, WMI scores of Blackstone Lake are indicative of exceptionally high quality.

Wetland Fish Community

Fish assemblages can also be used to reflect the environmental quality of wetlands. Seilheimer and Chow-Fraser (2006) have developed the Wetland Fish Index (WFI) to rank the quality of Great Lakes coastal wetlands based on abundance of particular indicator species. Seilheimer and Chow-Fraser has shown that the WFI score is significantly related to the WQI score for 40 wetlands in Lakes Erie and Ontario. During the August survey in 2005, we set three paired fykenets in Blackstone Lake, 2 in BK2 (1 large and 1 small set), and 1 in BK3 (1 large) (see Photo 1 and Appendix 1 for complete details on how the nets were set). Because of their small size, we could not set all three pairs of fykenets in each wetland, as is customary in the coastal wetland survey of eastern Georgian Bay.

There were 9 species of fish caught in both wetlands (Table 2). There were more fish caught in BK2 than in BK3. Some of the small fish such as blacknose shiner (*Notropis heterolepis*) tend to school, and are often caught together in one net, but despite their large numbers, they accounted for very little of the overall fish biomass in BK2. The 16 largemouth bass (*Micropterus salmoides*) together accounted for close to 70% of the total biomass, while the brown bullhead accounted for another 21%. Therefore, with regard to community dynamics, both the number and size of the species in question are important. Similarly, in BK3, the most abundant fish were rockbass (*Ambloplites rupestris*) which only accounted for 23% of the total biomass, while the 5 largemouth bass accounted for 43%.

With respect to using fish as indicators of wetland quality, however, size is not as important a consideration. Species such as largemouth bass or pumpkinseed are ubiquitous and can tolerate a certain amount of water-quality impairment, provided there are submergent plants in the water. However, a species such as the common shiner or rockbass cannot tolerate poor water quality, even when there are submergent plants. Hence, the presence of the latter indicates that the water is not disturbed. The fish assemblages found in BK2 and BK3 were used to calculate WFI (AB) scores of 3.42 and 3.51, respectively. Although no formal "quality" categories have been ascribed to these scores, values between 3.30 and 3.60 tend to be associated with good-quality sites that have not yet shown signs of human impact. Only 25% of the 109 sites surveyed by Seilheimer and Chow-Fraser from 2001 to 2005 have scores above 3.60, and for the most part, these wetlands have WQI scores that range from very good to excellent conditions. We did not find northern pike, smallmouth bass or bowfin, which occur commonly

in coastal Great Lakes wetlands, but this may be due to the limited time we had to conduct the survey.

Table 2. Summary of fish caught in fykenets at BK2 and BK3 in Blackstone Lake during August 2005. Data are presented according to descending order of abundance in BK2. WFI (AB) score is calculated as per Seilheimer and Chow-Fraser (2006) (see Appendix 1). Numbers in bracket are the total weight (g) for each species.

	-	Site		
Scientific name	Common name	BK2	BK3	
Notropis heterolepis	blacknose shiner	54		
I an amia aibh agus	nymplingood	(73)	4	
Lepomis gibbosus	pumpkinseed	(325)	4 (102)	
Micropterus salmoides	largemouth bass	16	5	
Notemigonus crysoleucas	golden shiner	(3484) 16	(1691)	
	kaona kullkood	(35)	(17)	
Ameturus nebutosus	brown bullnead	o (1045)	o (1088)	
Luxilus cornutus	common shiner	3	4	
Perca flavescens	yellow perch	(4.5) 3	(23) 4	
Lanomis sn	ounfich	(7.5)	(100)	
Lepomis sp.	summan	(5.3)		
Ambloplites rupestris	rockbass	(55.3)	8 (892)	
		(33.3)	(092)	
	WFI(AB) score	3.42	3.51	

Overall assessment

Based on water-quality characteristics (WQI scores), diversity of submersed aquatic plants (WMI scores), and the community of fish (WFI scores), wetlands of Blackstone Lake do not show any signs of human disturbance. BK1 appears to be showing some stress due to low water levels (which were mostly below 1.0 m), and this should be investigated further. The scope of this report does not permit analysis of the fish community in the deeper water, but it is clear that the lake has ample habitat for cold-water fish. Since the survey we conducted targeted fish that were associated with wetlands, we did not encounter muskies, walleye or trout.

Acknowledgements

Financial support for this survey was provided by the Ontario Ministry of Natural Resources as part of the Canada-Ontario Agreement in the form of a research grant to PC-F, McMaster University and Natural Sciences and Engineering Research Council of Canada in the form of a research grant to PC-F. I would also like to acknowledge the assistance provided by the family of Andy Metelka, who accompanied us to all the wetlands, and provided us a comfortable home away from home.

Literature Cited

- American Public Health Association (APHA). 1992. Standard Methods for the examination of water and wastewater. 18th Edition. Washington, DC.
- Chow-Fraser, P. 2006. Development of the Wetland Water Quality Index for assessing the quality of Great Lakes coastal wetlands. In: "*Coastal Wetlands of the Laurentian Great Lakes: Health, Habitat and Indicators*" Eds Simon and T.P., Stewart. 137-166.
- Crow, G.E and Helquist, C.B. 2000. Aquatic and Wetland Plants of Northeaster North America: Volume one and two. The University of Wisconsin Press. Madison, Wisconsin.
- Murphy, J. and Riley, J. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta. 27: 31-36.
- Newmaster, S.G., Harris, A.G., and Kershaw, L.J. 1997. Wetland plants of Ontario. Lone Pine Publishing, Edmonton, Alta., and Queen's Printer for Ontario, Toronto, Ont.
- Scott, W.B. and Crossman, E.J. 1998. Freshwater fishes of Canada. Galt House Publications Ltd. Oakville, ON, Can.
- Schneider, J.C., Laaman, P.W. and Gowing, H. 2000 Length-weight relationships. In: Schneider, James C. (ed.). Manual of fisheries survey methods II: with periodic updates. Michigan Department of Natural Resources, Fisheries Special Report 25, Ann Arbor, Chapter 17.
- Seilheimer, T. and Chow-Fraser, P. 2006. Development and validation of the Wetland Fish Index to assess the quality of coastal wetlands in the Laurentian Great Lakes. Can. J. Fish. Aquat. Sci. 63: 354-366
- Voss, E.G. 1972. Michigan Flora (Part 1: Gymnosperms and Monocots). Cranbrook Institute of Science and University of Michigan Herbarium

Appendix 1

Methods:

Water Quality Data

Field Sampling

For each site, water samples were collected from an open water site located at least 10 m from the edge of the emergent aquatic vegetation for analysis of planktonic algae, primary nutrients and suspended solids; in wetlands where submergent vegetation is present throughout, they were sampled in the deeper areas with very little submergent vegetation. This minimized contamination of water samples with benthic algae (either epiphytic or periphytic). Water samples were collected with a 1-L Van Dorn bottle deployed at mid-depth, and dispensed into clean Nalgene bottles (acid-washed and rinsed with deionized water) for nutrient analyses. Samples for chlorophyll analyses were stored in opaque Nalgene bottles. All samples were kept in sample jars and frozen until analysis (usually within 1 month of collection).

Temperature (**TEMP**; °C), conductivity (**COND**; μ S•cm⁻¹), dissolved oxygen (DO; mg/L), and turbidity (**TURB**; NTU) were measured 10 m from the submergent vegetation with a YSI 6600 multi-parameter probe attached to a 650 Display (YSI, Yellow Springs, Ohio, USA). We used the Hach 2100 Portalab to measure water turbidity in triplicate from water samples collected with the Van Dorn sampler. All sites were georeferenced with a GPS unit (4- to 6-m accuracy).

Laboratory processing and analysis

Samples for chlorophyll-a (CHL) content of phytoplankton were first filtered through 0.45-µm GF/C filters, then stored frozen in tin foil until analysis. At the time of analysis, frozen filters were unwrapped and placed in 10 mL of 90% reagent-grade acetone for 24-48 h (American Public Health Association 1992). Triplicate samples were centrifuged, and chlorophyll-a content were determined by measuring fluorescence with a Turners Design Fluorometer before and after acidification (to account for phaeophytin pigments). Following digestion in potassium persulfate in an autoclave, samples for total phosphorus (**TP**) and soluble reactive phosphorus (**SRP**) were measured in triplicate according to the molybdenum blue method of Murphy and Riley (1962). Total Kjeldahl nitrogen (TKN), total nitrate nitrogen (**TNN**) and total-ammonia nitrogen (**TAN**) were measured with Hach protocols and reagents (Hach Company 1989) using a Hach DR2500 spectrophotometer (Hach, Loveland, Colorado, U.S.A.). Total nitrogen (**TN**) were calculated by addition of TKN and TNN.

Water samples for total suspended solids (**TSS**; mg/L) determination were filtered through pre-weighed GF/C filters and kept frozen until processing. Filters were first dried at 100 °C for 1 h, dried in a dessicator with calcium sulphate for another hour, and then weighed to determine TSS. Loss on ignition was determined after combustion at 550 °C for 20 min followed by drying in the dessicator for an hour. Weight of the combusted filter was assumed to be total inorganic suspended solids (**ISS**; mg/L) whereas difference in the weight of the filter before and after combustion was assumed to be total organic suspended solids (TOSS; mg/L).

Fish community

Field Sampling

To survey the fish community, we used three pairs of fyke nets, two pairs of large (13mm and 4-mm bar mesh, 4.25-m length, 1 X 1.25-m front opening) and one pair of small (4-mm bar mesh, 2.1-m length, 0.5 X 1.0-m front opening) nets at each site (see Photo 1). These were set parallel to the emergent zone at the 1-m and 0.5-m depth contour, respectively. The paired nets were positioned face-to-face with a 7-m lead connecting them, while 2.5-m wings were set off the front openings at a 45° angle. Whenever possible, nets were set within submergent vegetation, but when there was too little vegetation or when appropriate depths were not available, the nets were set near the emergent vegetation. The nets were left overnight (20-24 h) and all fish present in the nets the next day were collected, sized, enumerated and identified according to Scott and Crossman (1998). Unknown species (i.e. small cyprinids) were frozen and identified later with a dissecting microscope. All other individuals were released live at the site.

To the extent possible, wetland fishing occurred in areas that best represented the distribution of habitat and variations in conditions. Criteria included appropriate depth, and proximity to emergent vegetation and the likelihood of submergent vegetation being present at some point during the summer, even though little or no submergent plants may have been observable at the time of sampling.

Estimation of fish weight

Weights of fish were calculated from lengths based on published relationships (Schneider et al. 2000). Appendix Table 1 summarizes the regression coefficients used in this study.

Aquatic plant surveys

Plant data used for development of the WMI were collected between 1996 and 2005, although the majority was collected between 2000-2005. On each sampling occasion in a wetland, the aquatic-plant community was surveyed as follows (usually between late June and late August). In wadeable water, emergent plants would be surveyed by walking along random transects parallel to the shoreline within the flooded zone. Some submergent taxa could be identified within these transects, but majority of these were surveyed with quadrats (0.75m x 0.75m) from a canoe or boat, within the vicinity where fykenets had been set contemporaneously to survey the fish community. Depending on the size and complexity of the wetland, these surveys would take from 20 minutes to several hours to complete. Generally, 10 to 15 quadrats would be sampled in each wetland and only the occurrence of species was noted—i.e. we did not estimate percent cover of particular species within the quadrats. The focus of the survey was to identify submergent, emergent and floating plants that serve as fish habitat; therefore, species associated with wet meadow were largely ignored. Plants were identified (to species where possible, and otherwise to genus) according to Voss (1972), Newmaster et al (1997) or Crow and Hellquist (2000).

Formulas for calculating indices

Water Quality Index (WQI) (Chow-Fraser 2006)

Chow-Fraser (2006) provided various equations to calculate WQI based on 5 to 12 parameters. In this paper, the 12-parameter was used, and the following equation was employed.

```
WQI score = -(0.3154965 * log TURB) -(0.3656606 * logTSS)-(0.3554498 * log ISS)
-(0.3760789 * log TP)-(0.1876029 * log SRP)-(0.0732574 * log TAN)
-(0.2016657 * log TNN)-(0.2276255 * log TN)-(0.5711395 * log COND)
-(1.1659027 * log TEMP)-(4.3562126 * log pH) -(0.2287166 * log CHL)-10.0239684
```

In all cases, the data were first \log_{10} transformed. See above for explanation of the abbreviations for parameters.

Wetland Fish Index (WFI) (Seilheimer and Chow-Fraser 2006)

The general formula used to generate the WFI score is shown below, where the are two parameters, optimum (U-value) and tolerance (T-value), which are generated from a Canonical Correspondence Analysis:

$$WFI = \left(\frac{\sum_{i=1}^{n} YiTiUi}{\sum_{i=1}^{n} YiTi}\right)$$

Where: Y_i = abundance or presence/absence of the species (if present,
value=1; if absent, value=0) T_i = value from 1-3 or niche breadth of species i
 U_i = value from 1-5, tolerance of species i to degradation

The U and T values for all plant taxa are shown in Table 2 in Appendix 1.

Wetland Macrophyte Index (WMI) (Croft and Chow-Fraser, in submission)

The general formula used to generate the WMI score is shown below, where the are two parameters, optimum (U-value) and tolerance (T-value), which are generated from a Canonical Correspondence Analysis:

$$WMI = \left(\frac{\sum_{i=1}^{n} YiTiUi}{\sum_{i=1}^{n} YiTi}\right)$$

Where: $Y_i = if$ the species is present, this value is 1; if absent, it is 0 $T_i = value$ from 1-3 or niche breadth of species *i* U_i = value from 1-5, tolerance of species *i* to degradation

The U and T values for all plant taxa are shown in Table 3 in Appendix 1.

Common Name	<u>Scientific Name</u>	<u>Code</u>	Intercept (a)	Slope of (b)
Alewife	Alosa pseudoharengus	ALPS	-5.29	3.06
Rock bass	Ambloplites rupestris	AMRU	-4.81	3.05
Brown Bullhead	Ameiurus nebulosus	AMNE	-4.61	2.88
Bowfin	Amia calva	AMCA	-4.90	2.96
American Eel	Anguilla rostrata	ANRO	-6.94	3.47
Fourspine Stickleback	Apeltes quadracus	APQU	-5.03	2.99
Freshwater Drum	Apoldinotus grunniens	APGR	-5.44	3.20
Goldfish	Carassius auratus	CAAU	-4.44	2.91
Longnose Sucker	Catostomus catostomus	CACA	-5.05	3.06
White Sucker	Catostomus commersoni	CACO	-4.97	3.00
Mottled Sculpin	Cottus bairdi	COBA	-5.30	3.25
Slimy Sculpin	Cottus cognatus	COCO	-5.30	3.25
Lake Chub	Couesius plumbeus	COPL	-5.27	3.17
Brook Stickleback	Culaea inconstans	CUIN	-5.03	2.99
Common Carp	Cyprinus carpio	CYCA	-4.44	2.84
Gizzard Shad	Dorosoma cepedianum	DOCE	-5.08	3.04
Redfin Pickerel	Esox a. americanus	ESAA	-5.29	3.01
Grass Pickerel	Esox a. vermiculatus	ESAV	-5.29	3.01
Northern Pike	Esox lucius	ESLU	-5.61	3.14
Muskellunge	Esox masquinongy	ESMA	-6.44	3.44
Rainbow Darter	Etheostoma caeruleum	ETCA	-5.40	3.20
Iowa Darter	Etheostoma exile	ETEX	-5.49	3.24
Least Darter	Etheostoma microperca	ETMI	-5.49	3.24
Johnny Darter	Etheostoma nigrum	ETNI	-5.40	3.20
Banded Killifish	Fundulus diaphanus	FUDI	-5.57	3.33
Threespine Stickleback	Gasterosteus aculeatus	GAAC	-5.03	2.99
Ruffe	Gymnocephalus cernuus	GYCE	-5.38	3.22
Brassy Minnow	Hybognathus hankinsoni	HYHA	-5.71	3.39
Black Bullhead	Icalurus melas	ICME	-4.61	2.89
Channel Catfish	Icalurus punctatus	ICPU	-5.81	3.28
Brook Silverside	Labisesthes sicculus	LASI	-5.12	2.96
Spotted Gar	Lepisoteus oculatus	LEOC	-5.4	2.98
Longnose Gar	Lepisoteus osseus	LEOS	-7.07	3.51
Green Sunfish	Lepomis cvanellus	LECY	-5.07	3.16
Pumpkinseed	Lepomis gibbonus	LEGI	-5.11	3.21
Bluegill	Lepomis macrochirus	LEMA	-5.10	3.17
Longear Sunfish	Lepomis megalotis	LEME	-5.04	3.16
Common Shiner	Luxilus cornutus	LUCO	-5.61	3.32
Smallmouth Bass	Micropterus dolomieu	MIDO	-4.91	3.03

Appendix 1 Table 1. Summary of slopes and intercepts of regression equation used to calculate fish weight from fish length (modified from Schneider et al. 2000). The regression equation is: $\log W = \log a + b \cdot \log L$ where W=weight (g), L=total length (mm).

Largemouth Bass	Micropterus salmoides	MISA	-5.17	3.13
White Perch	Morone americana	MOAM	-5.38	3.22
Silver Redhorse	Moxostoma anisurum	MOAN	-4.45	2.78
White Bass	Morone chrysops	MOCH	-5.02	3.03
Shorthead Redhorse	Moxostoma macrolepidotum	MOMA	-4.81	2.94
Round Goby	Neogobius melanostomus	NEME	-5.30	3.27
Golden Shiner	Notemigonus crysoleucas	NOCR	-5.25	3.08
Emerald Shiner	Notropis atherinoides	NOAT	-4.71	2.73
Common Shiner	Notropis cornutus	NOCO	-5.61	3.32
Blacknose Shiner	Notropis heterolepis	NOHE	-5.03	2.99
Blackchin Shiner	Notropis heterondon	NOHN	-5.03	2.99
Spottail Shiner	Notropis hudsonius	NOHU	-5.03	2.99
Spotfin Shiner	Notropis spilopterus	NOSP	-5.03	2.99
Sand Shiner	Notropis straminuus	NOST	-5.03	2.99
Mimic Shiner	Notropis volucellus	NOVO	-5.03	2.99
Tadpole Madtom	Noturus gyrinus	NOGY	-5.04	3.10
Rainbow Trout	Oncorhynchus mykiss	ONMY	-5.15	3.05
Chinook Salmon	Oncorhynchus tshawytscha	ONTS	-5.31	3.11
Rainbow Smelt	Osmerus mordax	OSMO	-5.12	2.96
Yellow Perch	Perca flavescens	PEFL	-5.33	3.17
Log Perch	Percina caprodes	PECA	-5.49	3.24
Sea Lamprey	Petromyzon marinus	PEMA	-4.70	2.63
Trout-perch	Percopsis omiscomaycus	PEOM	-4.97	3.00
Northern Redbelly Dace	Phoxinus eos	PHEO	-5.03	3.08
Bluntnose Minnow	Pimephales notatus	PINO	-5.71	3.39
Fathead Minnow	Pimephales promelas	PIPR	-5.03	3.08
White Crappie	Pomoxis annularis	POAN	-5.82	3.38
Black Crappie	Pomoxis nigromaculatus	PONI	-5.24	3.18
Round Whitefish	Prosopium cylindraceum	PRCY	-5.58	3.19
Ninespine Stickleback	Pungitius pungitius	PUPU	-5.03	2.99
Longnose Dace	Rhinichthys cataractae	RHCA	-5.03	3.08
Walleye	Sander vitrius	SAVI	-5.14	3.04
Rudd	Scardinius erythrophthalmus	SCER	-4.44	2.90
Creek Chub	Semotilus atromaculatus	SEAT	-4.85	2.92
Pearl Dace	Semotilus margarita	SEMA	-5.03	3.08
Central Mudminnow	Umbra limi	UMLI	-4.85	2.92
Cyprinid	Notropis sp.	UNCY	-5.03	2.99
Bullhead	Icalurus sp.	UNIC	-4.61	2.89
Sunfish	Lepomis sp.	UNLE	-5.11	3.21

Appendix 1 Table 2. "U" and "T" values for fish species based on presence/absence data (P/A) and abundances (AB). U values were assigned from the species' position on the first canonical axis and the T values were assigned based on the weighted standard deviation of the first axis species scores. Species that only occurred in 2 sites were given T value of 1. Modified from Seilheimer and Chow-Fraser (2006) to include data from Georgian Bay, the North Channel and Lake Superior (Seilheimer and Chow-Fraser, in submission).

			Presence	e/Absence	Abun	dance
Code	common name	Scientific Name	U	Т	U	Т
CACA	longnose sucker	Catostomus catostomus	5	3	5	3
ETEX	iowa darter	Etheostoma exile	5	3	5	3
LEME	longear sunfish	Lepomis megalotis	5	3	5	3
LEOS	longnose gar	Lepisoteus osseus	5	3	5	3
NOHN	blackchin shiner	Notropis heterondon	5	3	5	3
NOVO	mimic shiner	Notropis volucellus	5	3	5	3
	northern redbelly					
PHEO	dace	Phoxinus eos	5	3	5	3
APQU	fourspine stickleback	Apeltes quadracus	5	1*	4	1*
PRCY	round whitefish	Prosopium cylindraceum	5	1*	4	1*
SEMA	pearl dace	Margariscus margarita	5	1*	4	1*
COBA	mottled sculpin	Cottus bairdi	4	3	4	3
COCO	slimy sculpin	Cottus cognatus	4	3	4	3
ESAA	redfin pickerel	Esox americanus	4	3	4	3
ESMA	muskellunge	Esox masquinongy	4	3	4	3
FUDI	banded killifish	Fundulus diaphanus	4	3	4	3
GYCE	ruffe	Gymnocephalus cernuus	4	3	4	3
LUCO	common shiner	Luxilus cornutus	4	3	5	3
MOAN	silver redhorse	Moxostoma anisurum	4	3	4	3
		Moxostoma				
MOMA	shorthead redhorse	macrolepidotum	4	3	4	2
OSMO	rainbow smelt	Osmerus mordax	4	3	4	3
PEOM	trout-perch	Percopsis omiscomaycus	4	3	4	3
PUPU	ninespine stickleback	Pungitius pungitius	4	3	4	3
SAVI	walleye	Sander vitreus	4	3	4	3
AMCA	bowfin	Amia calva	4	2	4	2
ESLU	northern pike	Esox lucius	4	2	4	2
LASI	brook silverside	Labidesthes sicculus	4	2	4	2
MIDO	smallmouth bass	Micropterus dolomieu	4	2	4	2
NOGY	tadpole madtom	Noturus gyrinus	4	2	4	2
NOHE	blacknose shiner	Notropis heterolepis	4	2	4	2
NOST	sand shiner	Notropis stamineus	4	2	3	2
UMLI	central mudminnow	Umbra limi	4	2	4	2
AMRU	rockbass	Ambloplites rupestris	4	1	4	2
ETMI	least darter	Etheostoma microperca	4	1*	5	1*
AMME	black bullhead	Ameiurus melas	3	2	3	2
CUIN	brook stickleback	Culaea inconstans	3	2	3	2
ETNI	johnny darter	Etheostoma nigrum	3	2	3	2
LEGI	pumpkinseed	Lepomis gibbonus	3	2	3	2

MISA	largemouth bass	Micropterus salmoides	3	2	3	2
NOAT	emerald shiner	Notropis atherinoides	3	2	3	2
NOCR	golden shiner	Notemigonus crysoleucas	3	2	3	2
PECA	logperch	Percina caprodes	3	2	4	2
PEFL	yellow perch	Perca flavescens	3	2	3	2
PONI	black crappie	Pomoxis nigromaculatus	3	2	3	2
AMNE	brown bullhead	Ameiurus nebulosus	3	1	2	1
CACO	white sucker	Catostomus commersoni	3	1	3	2
LEMA	bluegill	Lepomis macrochirus	3	1	3	1
PINO	bluntnose minnow	Pimephales notatus	3	1	4	2
SEAT	creek chub	Semotilus atromaculatus	3	1	3	1
ALPS	alewife	Alosa pseudoharengus	2	2	1	2
GAAC	threespine stickleback	Gasterosteus aculeatus	2	2	2	1
CYCA	common carp	Cyprinus carpio	2	1	1	1
CYSP	spotfin shiner	Cyprinella spilopterus	2	1	1	1
NOHU	spottail shiner	Notropis hudsonius	2	1	2	1
PIPR	fathead minnow	Pimephales promelas	2	1	2	1
APGR	freshwater drum	Aplodinotus grunniens	1	2	1	2
CAAU	goldfish	Carassius auratus	1	2	1	2
DOCE	gizzard shad	Dorosoma cepedianum	1	2	1	2
HYHA	brassy minnow	Hybognathus hankinsoni	1	2	1	2
ICPU	channel catfish	Icalurus punctatus	1	2	1	2
LECY	green sunfish	Lepomis cyanellus	1	1	1	1
MOAM	white perch	Morone americana	1	1	1	2
POAN	white crappie	Pomoxis annularis	1	1	1	1
MOCH	white bass	Morone chrysops	1	1*	1	1*
		Oncorhynchus				
ONTS	chinook salmon	tshawytscha	1	1*	2	1*

Appendix 1 Table 3. Summary of U and T values for all taxa included in this study, organized according to habit type (emergent, floating and submergent). Common names and species codes are also included for convenience. See text for explanation of U and T values. Percent occurrence indicates the percentage of wetlands (n=178) in which the species in question occurred.

Code	Taxon	Taxon Common name		T	Percent
E			value	value	occurrence
Emergent	Elso chania a cicularia	noodlo anileo much	4	2	0.1
ELAC	Eleocharis acicularis	meetile spike rush	4	3 2	9.1
ELSNI	Eleocharis smalli Equipotum fluvigtilo	marsh spike rush	4	$\frac{2}{2}$	52.9
EQFL	Equiseium jiuviaille	water norsetan	4	2	0.8
	Eriocation aquaticum	pipewort Durmle le casatrife	5 1	5	17.0
	Lyinrum saiicaria	Purple loosesuffle	1	1	21.0
	Polygonum amphibium	water smartweed	1	1	8.0 4.5
PLSP	Polygonum sp. Doutedouig condata	sinartweed	1	1	4.5
FOCU	Ponteaeria coraala	pickererweed	2	2 1	46.5
SGCU	Sagittaria cuneata	small arrownead	3	1	9.7
SGLA	Sagittaria latifolia	A many has d subsisted	2	1	55.0 6 9
SOSP	Sagittaria sp.	Arrownead species	2 4	1	0.8
SCAC	Scirpus acutus	hardstem bulrush	4	2	50
SCAM	Scirpus americanus	three-square buirush	5	3	5.1
SCSP	Scirpus sp.	bulrush	4	1	31.8
SCVA	Scirpus validus	softstem bulrush	4	1	21.6
SPAD	Sparganium androcladum	Branched bureed	4	3	2.3
SPAN	Sparganium angustifolium	narrow-leaf burreed	5	1	1./
SPCL	Sparganium chlorocarpum	greenfruit burreed	2	2	2.3
SPEM	Sparganium emersum	unbranched burreed	1	2	2.5
SPEU	Sparganium eurycarpum	giant burreed	3	2	10.8
SPSP	Sparganium sp.	burreed	2	2	15.3
TYAN	Typha angustifolia	narrow-leaf cattail	1	1	21.0
TYLA	Typha latifolia	broadleaf cattail	3	2	16.5
TYSP	Typha sp.	cattail	1	1	23.3
TYXG	Typha x glauca	hybrid cattail	1	2	7.4
UTCO	Utricularia cornuta	horned bladderwort	5	3	1.7
Floating					
BRSC	Brasenia schreberi	water shield	4	1	21
EICR	Eichhornia crassipes	water hyacinth	1	1	0.6
HYMO	Hydrocharis morsus-ranae	frogbit	1	2	11.4
LEMI	Lemna minor	lesser duckweed	1	1	11.4
LETR	Lemna trisulca	ivy duckweed	2	2	7.4
NELU	Nelumbo lutea	american lotus	1	1	1.2
NUAD	Nuphar advena	spatterdock	1	3	4.5
NUVA	Nuphar variegata	common yellow pond lily	2	1	56.7
NYOD	Nymphaea odorata	fragrant water lily (white)	2	1	66.5
NMCO	Nymphoides cordata	little floating hearts	5	3	2.8

PIST	Pistia stratiotes	water lettuce	1	1	0.6
PONA	Potamogeton natans	broad-leaved pondweed	2	1	30.7
SPFL	Sparganium fluctuans	floating burreed	4	2	17.6
SPIR	Spirodela polyrhiza	Greater duckweed	1	1	5.1
TRNA	Trapa natans	water chestnut	1	1	0.6
WOLF	Wolffia sp.	watermeal	1	2	1.7
Submergent					
BIBE	Bidens beckii	water marigold	4	2	22.7
CABO	Cabomba	fanwort	1	1	4.5
CASP	Callitriche sp.	water starwort	4	2	10.2
CEDE	Ceratophyllum demersum	coontail	1	1	45.5
CHSP	Chara sp.	muskgrass	3	2	55.1
ELCA	Elodea canadensis	canadian waterweed	2	1	63.6
HIVU	Hippuris vulgaris	mare's tail	3	3	1.7
ISSP	Isoetes sp.	quillwort	4	3	12.5
LODO	Lobelia dortmanna	water lobelia	5	2	6.3
MYAL	Myriophyllum	alternate water milfoil	5	3	7.4
	alterniflorum				
MYHE	Myriophyllum	two-leaf water milfoil	3	2	8.0
	heterophyllum				
MYSI	Myriophyllum sibiricum	common water milfoil	3	2	35.8
MYSC	Myriophyllum spicatum	eurasian water milfoil	1	1	30.7
MYTE	Myriophyllum tenellum	slender water milfoil	4	3	8.5
MYVE	Myriophyllum verticillatum	whorled water milfoil	4	1	0.6
MYSP	Myrophyllum sp.	water milfoil	1	1	30.1
NAFL	Najas flexilis	slender water nymph	3	2	51.7
NEAQ	Neobeckia aquatica	North Amer Lake-Cress	5	3	1.1
NISP	Nitella sp.	stonewort	3	1	13.1
POAM	Potamogeton amplifolius	large-leaved pondweed	4	2	25.0
POCR	Potamogeton crispus	curly-leaf pondweed	1	1	25.6
POEP	Potamogeton epiphydrus	ribbon-leaf pondweed	4	3	10.8
POFR	Potamogeton friesii	Fries' Pondweed	2	1	1.1
POGR	Potamogeton gramineus	variable pondweed	4	2	29.5
POIL	Potamogeton illinoensis	Illinois pondweed	3	2	8.0
POOB	Potamogeton obtusifolius	Bluntleaf pondweed	2	1	0.6
PO SLEN	Potamogeton pusillus	"slender" pondweed	2	1	2.3
PORI	Potamogeton richardsonii	clasping-leaved pondweed	3	2	64.8
PORO	Potamogeton robbinsii	fern-leaf pondweed	4	2	25.0
POSP	Potamogeton sp.	pondweed	1	2	21.0
POSR	Potamogeton spirillus	Northern snailseed	5	2	14.2
		pondweed			
POVA	Potamogeton vaseyi	Vaseyi pondweed	2	1	0.6
POZO	Potamogeton zosteriformis	flat-stemmed pondweed	3	1	38.1
RALO	Ranunculus longirostris	buttercup, crowfoot	2	1	16.5
RASP	Ranunculus sp	Crowfoot	2	1	1.1
SGGR	Sagittaria graminea	grassy arrowhead	4	3	5.7
SCSU	Scirpus subterminalis	Water bulrush	5	2	13.6
SPON	Fresh water sponges	sponges	5	3	9.7

STPE	Stuckenia pectinata	sago pondweed	1	1	37.5
STVA	Stuckenia vaginata	sheathed pondweed	2	1	0.6
UTGE	Utricularia geminiscapa	hidden fruit	5	3	1.1
		bladderwort			
UTGI	Utricularia gibba	humbed bladderwort	5	2	1.1
UTIN	Utricularia intermedia	flatleaved bladderwort	3	2	5.1
UTMI	Utricularia minor	lesser bladderwort	5	2	1.7
UTPU	Utricularia purpurea	purple bladderwort	5	2	1.7
UTSP	Utricularia sp.	bladderwort	1	2	4.0
UTVU	Utricularia vulgaris	common bladderwort	3	2	30.0
VAAM	Vallisneria americana	tape grass, eel grass	3	1	64.2
ZIPA	Zizania sp.	wild rice	4	2	30.1
ZODU	Zosterella dubia	water stargrass	2	2	5.7

Appendix 2

Wetland: **BK1 (Ludwig's Bay)** Latitude: 45.24777 Date: 08/29/2005 Longitude: -79.89470

Water Quality Summary: WQI score of 2.446 Excellent

Parameter	Unit	Value
Depth	cm	100
Turbidity	FTU	0.75
Secchi	cm	Bottom
Temperature	°C	24.25
рН		8.19
Dissolved Oxygen	mg/L	9.35
Conductivity	μS/cm	52
Light Extinction		1.180
Chlorophyll	μg/L	2.4
Total Suspended Solids	mg/L	0.76
Total Phosphorus	μg/L	21.3
Total Dissolved Phosphorus	μg/L	n/a
Soluble Reactive Phosphorus	μg/L	4.3
Total Ammonia Nitrogen	mg/L	0.001
Total Nitrate Nitrogen	mg/L	0.100
Total Nitrogen	mg/L	10

Aquatic Vegetation Summary:

Eme	ergents	Subm	ergents	Floating	
Species	Common Name	Species	Common	Species	Common
			Name		Name
Eleocharis	Robbins' spike-	Lobelia	Water lobelia	Nymphoides	Little
robbinsii	rush	dortmanna		cordata	floating
					hearts
Equisetum	Water horsetail	Nitella sp.	Stonewort	Nuphar	Least yellow
fluviatile				pumila	lily
Eriocaulon	Pipewort	Potamogeton	Broad-leaved	Nuphar	Common
aquaticum		natans	pondweed	variegata	yellow pond
					lily
Scirpus sp.	Bulrush	Scirpus	Water bulrush,		
		subterminalis	swaying rush		
Sagittaria	Arrowhead	Sparganium	Floating		
species	species	fluctuans	burreed		
Sparganium	Branched	Utricularia	Flatleaved		
androcladum	bureed	intermedia	bladderwort		
Sparganium	Burreed	Utricularia			
sp.		purpurea			
Sparganium					
species					

Water Quality Summary: WQI score of 2.456 Excellent

Parameter	Unit	Value
Depth	cm	270
Turbidity	FTU	1.06
Secchi	cm	bottom
Temperature	°C	24.29
pH		8.00
Dissolved Oxygen	mg/L	8.51
Conductivity	μS/cm	53
Light Extinction		2.64
Chlorophyll	μg/L	1.17
Total Suspended Solids	mg/L	0.77
Total Phosphorus	μg/L	25.6
Total Dissolved Phosphorus	μg/L	n/a
Soluble Reactive Phosphorus	μg/L	1.8
Total Ammonia Nitrogen	mg/L	0.001
Total Nitrate Nitrogen	mg/L	0.200
Total Nitrogen	mg/L	10

Aquatic Vegetation Summary: WMI score of 3.82

Emergents		Submergents		Floating	
Species	Common Name	Species	Common Name	Species	Common Name
Eleocharis robbinsii	Robbins' spike- rush	Myriophyllum sibiricum	Short-spike (common) water milfoil	Brasenia schreberi	Water shield
Equisetum fluviatile	Water horsetail	Najas flexilis	Slender water nymph	Nymphoides cordata	Little floating hearts
Eriocaulon aquaticum	Pipewort	Nitella sp.	Stonewort	Nymphaea odorata	Fragrant water lily (white)
Pontederia cordata	Pickerelweed	Potamogeton pusillus	"Slender" pondweed		
Scirpus sp.	Bulrush	Potamogeton epiphydrus	Ribbon-leaf pondweed		
Sagittaria species	Arrowhead species	Potamogeton natans	Broad-leaved pondweed		
Sparganium androcladum	Branched bureed	Potamogeton spirillus	Northern snailseed pondweed		

Typha sp.	Cattail	Scirpus	Water bulrush,
		subterminalis	swaying rush
		Sagittaria	Grassy
		graminea	arrowhead
		Sparganium	Floating
		fluctuans	burreed
		sponges	sponges
		Utricularia	Purple
		purpurea	bladderwort
		Utricularia	Common
		vulgaris	bladderwort

Fish Summary:

In the following, all fish lengths are measured in cm. "Extra fish" refers to fish that have been tallied without accompanying length measurements. Weights of fish are in g.

Fyke Nets

Set	Latitude	Longitude
1 (BK2)	45.23126	-79.86168
2 (BK2)	45.23109	-79.86126

Set	Fyke Size	Mesh Size	Common Name	Length	Weight	Extra Fish
1	SM	east	blacknose shiner	60	1.91	
1	SM	east	blacknose shiner	61	2.01	
1	SM	east	blacknose shiner	65	2.43	
1	SM	east	blacknose shiner	57	1.64	
1	SM	east	blacknose shiner	53	1.32	
1	SM	east	blacknose shiner	58	1.73	
1	SM	east	blacknose shiner	60	1.91	
1	SM	east	brown bullhead	192	95.96	
1	SM	east	brown bullhead	182	82.24	
1	SM	east	largemouth bass	77	5.38	
1	SM	east	largemouth bass	47	1.15	
1	SM	east	largemouth bass	68	3.65	
1	SM	east	largemouth bass	61	2.60	
1	SM	east	pumpkinseed	62	4.40	
1	SM	east	rockbass	140	55.34	
1	SM	west	blacknose shiner	39	0.53	
1	SM	west	blacknose shiner	54	1.40	
1	SM	west	brown bullhead	168	65.28	
1	SM	west	pumpkinseed	66	5.38	
1	SM	west	pumpkinseed	99	19.76	
1	SM	west	pumpkinseed	72	7.11	
1	SM	west	pumpkinseed	78	9.19	
1	SM	west	pumpkinseed	90	14.55	
1	SM	west	pumpkinseed	112	29.37	
1	SM	west	pumpkinseed	84	11.66	

1	SM	west	pumpkinseed	62	4.40	
1	SM	west	pumpkinseed	94	16.73	
1	SM	west	pumpkinseed	78	9.19	
1	SM	west	pumpkinseed	61	4.17	
1	SM	west	pumpkinseed	84	11.66	
1	SM	west	pumpkinseed	54	2.82	
1	SM	west	pumpkinseed	67	5.64	
1	SM	west	pumpkinseed	64	4.87	
1	SM	west	pumpkinseed			4
1	SM	west	yellow perch	79	4.85	
2	LG	LARGE	brown bullhead	290	315.34	
2	LG	LARGE	brown bullhead	230	161.56	
2	LG	LARGE	largemouth bass	457	1411.36	
2	LG	LARGE	largemouth bass	185	83.44	
2	LG	LARGE	largemouth bass	306	402.60	
2	LG	LARGE	largemouth bass	394	887.51	
2	LG	LARGE	largemouth bass	300	378.42	
2	LG	LARGE	largemouth bass	233	171.67	
2	LG	LARGE	largemouth bass	210	124.03	
2	LG	SMALL	blacknose shiner	66	2.54	
2	LG	SMALL	blacknose shiner	50	1.11	
2	LG	SMALL	blacknose shiner	57	1.64	
2	LG	SMALL	blacknose shiner	54	1.40	
2	LG	SMALL	blacknose shiner	50	1.11	
2	LG	SMALL	blacknose shiner	51	1.18	
2	LG	SMALL	blacknose shiner	48	0.98	
2	LG	SMALL	blacknose shiner	51	1.18	
2	LG	SMALL	blacknose shiner	49	1.04	
2	LG	SMALL	blacknose shiner	46	0.86	
2	LG	SMALL	blacknose shiner	52	1.25	
2	LG	SMALL	blacknose shiner	68	2.78	
2	LG	SMALL	blacknose shiner	50	1.11	
2	LG	SMALL	blacknose shiner	46	0.86	
2	LG	SMALL	blacknose shiner	47	0.92	
2	LG	SMALL	blacknose shiner			30
2	LG	SMALL	brown bullhead	174	72.24	
2	LG	SMALL	brown bullhead	195	100.35	
2	LG	SMALL	brown bullhead	225	151.64	
2	LG	SMALL	common shiner	51	406.35	
2	LG	SMALL	common shiner	54	441.21	
2	LG	SMALL	common shiner	60	513.50	
2	LG	SMALL	golden shiner	57	1.46	
2	LG	SMALL	golden shiner	62	1.89	
2	LG	SMALL	golden shiner	90	5.96	
2	LG	SMALL	golden shiner	57	1.46	
2	LG	SMALL	golden shiner	64	2.09	
2	LG	SMALL	golden shiner	62	1.89	
2	LG	SMALL	golden shiner	58	1.54	

2	LG	SMALL	golden shiner	67	2.40	
2	LG	SMALL	golden shiner	54	1.24	
2	LG	SMALL	golden shiner	64	2.09	
2	LG	SMALL	golden shiner	62	1.89	
2	LG	SMALL	golden shiner	67	2.40	
2	LG	SMALL	golden shiner	71	2.87	
2	LG	SMALL	golden shiner	61	1.80	
2	LG	SMALL	golden shiner			2
2	LG	SMALL	largemouth bass	60	2.47	
2	LG	SMALL	largemouth bass	47	1.15	
2	LG	SMALL	largemouth bass	63	2.87	
2	LG	SMALL	largemouth bass	72	4.36	
2	LG	SMALL	largemouth bass	53	1.67	
2	LG	SMALL	pumpkinseed	48	1.93	
2	LG	SMALL	pumpkinseed	80	9.97	
2	LG	SMALL	pumpkinseed	68	5.92	
2	LG	SMALL	pumpkinseed	93	16.17	
2	LG	SMALL	pumpkinseed	100	20.41	
2	LG	SMALL	pumpkinseed	66	5.38	
2	LG	SMALL	pumpkinseed	54	2.82	
2	LG	SMALL	pumpkinseed	95	17.31	
2	LG	SMALL	pumpkinseed	122	38.64	
2	LG	SMALL	pumpkinseed	57	3.36	
2	LG	SMALL	pumpkinseed	66	5.38	
2	LG	SMALL	sunfish	34	0.64	
2	LG	SMALL	sunfish	63	4.63	
2	LG	SMALL	yellow perch	50	1.14	
2	LG	SMALL	yellow perch	55	1.54	

Parameter	Unit	Value
Depth	cm	120
Turbidity	FTU	0.63
Secchi	cm	bottom
Temperature	°C	22.59
pH		7.71
Dissolved Oxygen	mg/L	8.70
Conductivity	μS/cm	50
Light Extinction		1.53
Chlorophyll	μg/L	1.26
Total Suspended Solids	mg/L	0.91
Total Phosphorus	μg/L	15.86
Total Dissolved Phosphorus	μg/L	n/a
Soluble Reactive Phosphorus	μg/L	1.84
Total Ammonia Nitrogen	mg/L	0.001
Total Nitrate Nitrogen	mg/L	0.150
Total Nitrogen	mg/L	10

Water Quality Summary: WQI score of 2.422 Excellent

Aquatic Vegetation Summary: WMI score of 4.00

Emergents		Submergents		Floating	
Species	Common Name	Species	Common Name	Species	Common Name
Sparganium androcladum	burreed	Lobelia dortmanna	water lobelia	Nymphoides cordata	little floating hearts
Eleocharis robbinsii	Robbins' spike- rush	Nitella sp.	stonewort	Nuphar pumila	least yellow lily
Equisetum fluviatile	water horsetail	Scirpus subterminalis	Water bulrush, swaying rush	Nuphar variegata	common yellow pond lily
Eriocaulon aquaticum	pipewort	Utricularia intermedia	flatleaved bladderwort		
Pontederia cordata	pickerelweed	Utricularia purpurea			
Scirpus sp.	bulrush	Potamogeton natans	broad-leaved pondweed		
Sagittaria sp.	Arrowhead species	Sparganium fluctuans	floating burreed		
		Utricularia vulgaris	common bladderwort		

Fish Summary:

In the following, all fish lengths are measured in cm. "Extra fish" refers to fish that have been tallied without accompanying length measurements. Weights of fish are in g.

Set		Ι	Latitude		Longitude	
3 (BK3)		4	45.21807		-79.86909	
- (/					
Set	Fyke Size	Mesh Size	Common Name	Length	Weight	Extra Fish
3	LG	LG	largemouth bass	295	359.04	
3	LG	LG	largemouth bass	330	509.83	
3	LG	LG	largemouth bass	380	792.57	
3	LG	LG	pumpkinseed	116	32.87	
3	LG	LG	rockbass	182	123.32	
3	LG	LG	rockbass	215	205.15	
3	LG	LG	rockbass	210	190.92	
3	LG	LG	rockbass	140	55.34	
3	LG	LG	rockbass	148	65.57	
3	LG	SM	brown bullhead	240	182.67	
3	LG	SM	brown bullhead	238	178.31	
3	LG	SM	brown bullhead	228	157.54	
3	LG	SM	brown bullhead	286	302.95	
3	LG	SM	brown bullhead	245	193.87	
3	LG	SM	brown bullhead	174	72.24	
3	LG	SM	common shiner	87	876.81	
3	LG	SM	common shiner	77	735.44	
3	LG	SM	common shiner	76	721.72	
3	LG	SM	common shiner	90	920.68	
3	LG	SM	golden shiner	89	5.76	
3	LG	SM	golden shiner	86	5.18	
3	LG	SM	golden shiner	88	5.57	
3	LG	SM	largemouth bass	125	24.49	
3	LG	SM	largemouth bass	77	5.38	
3	LG	SM	pumpkinseed	90	14.55	
3	LG	SM	pumpkinseed	100	20.41	
3	LG	SM	pumpkinseed	117	33.79	
3	LG	SM	rockbass	185	129.64	
3	LG	SM	rockbass	125	39.15	
3	LG	SM	rockbass	160	83.20	
3	LG	SM	yellow perch	164	49.27	
3	LG	SM	yellow perch	116	16.42	
3	LG	SM	yellow perch	100	10.26	
3	LG	SM	yellow perch	130	23.58	

Fyke Nets

Photo 1. Photo showing the orientation of fyke nets set in Blackstone Lake.